Balancing Radar Data Assimilation with a nested Digital Filter Initialization

Todd Hutchinson, William Ramstrom and David Gill

22 June 2010

Agenda

- Nesting Capability in the WRF Digital Filter
 Initialization
 - Implementation
 - Results
- Radar Data Assimilation
 - ADAS Cloud Analysis
 - Experiment Setup
 - Statistical Results
 - Case Study
 - Summary

Nested DFI Implementation Background

- Digital Filter Initialization (DFI) included since WRF3.0
 - filter results from a backward integration
 - filter results from a forward integration
 - more balanced initialization, reducing 'spin-up'

Limitation: No nesting

- We had a nesting requirement and were looking to better balance radar assimilated analyses
- This update adds DFI capability for nested runs
 - To be included in WRF 3.3 (March 2011), possibly WRF3.2.1 (August)

Nested DFI Implementation Details

- Most code changes simply add nesting 'loops' to existing DFI functions
- Uninitialized variables (vertical motion, etc.) caused imbalances in initial backward integration, so,
- Added a single forward step followed by a single backward step to assure initialization of fields

Nested DFI Results – mu dif per step

48N

45N

42N

39N

36N

33N

30N

27N

24N

GrADS: COLA/ICES

DFI

130W 125W 120W 115W 110W 105W 100W 95W 90W 85W 80W 75W 70W 65W

4 km

300 150 25 15 7 3 -3 -7 -15 -25 -150 -300

vsP

GrADS: COLA/IGES

Nested DFI Results – mu dif per step

NO DFI

GrADS: COLA/ICES

DFI

4 km

vsł

GrADS: COLA/IGES

Radar DA – ADAS Cloud Analysis

- infer cloud, rain, ice, snow mixing ratios and cloud type from 3-D reflectivity
- Vertical motion based upon cloud type
- Temperature adjusted using a moist adiabatic profile based upon presence of cloud water, ice and assumed entrainment
- Removal of anomalous propagation from reflectivity

Experiment Setup - Domain

Experiment Setup – Model Details

- WRF-ARW version 3.1
- Feedback from 4 km to 12 km nest
- Kain-Fritsch convection on 12km grid
- WSM-5 Microphysics
- RUC 13 km isentropic for background analysis
- GFS 1-degree for boundary conditions
- Experiments:
 - Control: WPS
 - 15 hr fcsts
 - Exp 1: Radar DA using ADAS
 - 15 hr fcsts
 - Exp 2: Radar DA plus DFI
 - 1-hour back, 30 min fwd
 - 9 hr forecasts

Verification

- 12 cases from August and September 2009
- Equitable threat scores of 1-hour accumulated precip
 1 hour NCEP Stage IV used as truth
- Scores combined by weighting by number of observed points in each case
- Results for 0.05 in / hr (1.27 mm/hr)

Statistical Results – 00 UTC runs (5)

Statistical Results – 12 UTC runs (8)

Pcp1Hr ETS at 0.05 in/hr by Experiment All selected dates 12Z 4km run

Summary

- Nested implementation of DFI to be integrated in WRF 3.2.1 or 3.3
- Assimilation of radar data (ADAS cloud analysis) improves precipitation skill scores in the first 6-8 forecast hours
- Use of digital filter provides additional balance to analysis
 - However, filter may remove some signals at analysis time

